
Static Analysis of the Mars Exploration Rover Flight Software

 Guillaume Brat Roger Klemm
 Kestrel Technology California Institute of Technology

 brat@email.arc.nasa.gov roger.klemm@jpl.nasa.gov

Abstract

The demise of the Mars Orbiter and Mars Polar Lander
missions has highlighted the criticality of software
reliability for Mars missions. In both cases, problems
manifested themselves at the software level, even if the
causes are to be found somewhere else (e.g., design
process). Therefore, it is fair to assume that many
problems could be caught during software verification
provided that one uses the right tools and looks for the
right types of errors. In this paper, we describe a study in
which we apply this theory to the flight software of a
current mission, i.e., the Mars Exploration Rover mission
(MER). The study consists of applying a static analysis
tool to the MER code to identify runtime errors, such as
un-initialized variables, out-of-bound array accesses, and
arithmetic overflows and underflows. The goal is both to
demonstrate the usefulness of formal methods in a real
software development context, and more importantly, to
participate in the verification of the code that will fly
during this mission. The work was conducted by a tool
expert and a code expert. All identified problems were
passed on to the appropriate developers. This paper
describes the setup of the study, the findings, and
proposals for integrating such a tool in a software
development process. It also includes illustrative
examples of the problems found by the analysis.

1. Introduction

Designing reliable software systems is a critical need
for NASA. The result of a software fault ranges from
losing a day of science data (as in the Mars Path Finder,
MPF) to the loss of an entire mission (e.g., Mars Polar
Lander, MPL). Losing an entire mission results in
wasting precious time in scientific experiments; e.g., one
has to wait two years to find another suitable launch
window for Mars, but it takes at least three years to
prepare hardware and software for a new mission. The
financial impact is also significant; e.g., a rover mission
to Mars costs a minimum of $250 million dollars. It is
easy to see why NASA has a vested interest in increasing
the reliability of its critical software systems.

In general, the software development process depends
greatly on the current flight software manager. However,
the verification and validation process (V&V) is more or
less the same across missions. It consists of some unit
testing performed by the developers themselves, and then
a series of system integration tests using different levels
of simulation. For some missions, the actual hardware
was preferred to even a high-fidelity testbed. We are not
aware of the use of any formal methods in the V&V
process. In some sense, one can say that the validation
aspect takes precedence over the verification aspect. Our
overall goal is to try to convince mission developers that
significant reliability gains can be obtained by inserting
some formal methods in the V&V process.

For such a demonstration to be effective, it needs to be
conducted on real code with real errors. Then, one has a
chance to convince developers that automated tools based
on formal methods can identify cases that elude any
tester. For this particular experiment, we chose to
concentrate on one technique (i.e., static analysis, and
more specifically, static analysis based on abstract
interpretation) and one specific class of errors (runtime
errors such as out-of-bound array accesses, un-initialized
variables, arithmetic overflows and underflows, and so
on). We applied this technique to the flight software
system of the Mars Exploration Rover mission. Note that
the goal is not to realize a statistically meaningful study,
but to demonstrate the usefulness of current static
analysis.

2. Static Analysis

The goal of static analysis is to assess code properties
without executing the code. Several techniques can be
used to perform static analysis, such as theorem proving,
data flow analysis [1], constraint solving [2], and abstract
interpretation [3,4]. For this experiment, we use a tool,
called PolySpace C-Verifier [5], which is based on
abstract interpretation.

2.1. Overview

The theory of Abstract Interpretation pioneered by
Patrick and Radhia Cousot in the mid 70's provides

algorithms for building program analyzers which can
detect all runtime errors by exploring the text of the
program [3,4]. The program is not executed and no test
case is needed. A program analyzer based on Abstract
Interpretation is a kind of theorem prover that infers
properties about the execution of the program from its
text (the source code) and a formal specification of the
semantics of the language (which is built in the analyzer).
The fundamental result of Abstract Interpretation is that
program analyzers obtained by following the formal
framework defined by Patrick and Radhia Cousot are
guaranteed to cover all possible execution paths.

Runtime errors are errors that cause exceptions at
runtime. Typically, in C, either they result in creating core
files or they cause data corruption that may cause crashes.
In this study we mostly looked for the following runtime
errors:

• Access to un-initialized variables (NIV)
• Access to un-initialized pointers (NIP)
• Out-of-bound array access (OBA)
• Arithmetic underflow/overflow (OVF)
• Invalid arithmetic operations (e.g., dividing by

zero or taking the square root of a negative
number) (IAO)

• Non-terminating loops (NTL)
• Non-terminating calls (NTC)
The price to pay for exhaustive coverage is

incompleteness: the analyzer can raise false alarms on
some operations that are actually safe. However, if the
analyzer deems an operation safe, then this property holds
for all possible execution paths. The program analyzer
can also detect certain runtime errors which occur every
time the execution reaches some point in the program.
Therefore, there are basically two complementary uses of
a program analyzer:

• as a debugger that detects runtime errors
statically without executing the program,

• as a preprocessor that reduces the number of
potentially dangerous operations that have to be
checked by a traditional validation process (code
reviewing, test writing, and so on).

For the second use the tool should achieve a good
selectivity - the percentage of operations which are
proven to be safe by the program analyzer. Indeed, if 80%
of all operations in the program are marked as potentially
dangerous by the analyzer, there are no benefits to using
such techniques.

2.2. PolySpace C-Verifier

PolySpace C-Verifier is the first tool implementing
Abstract Interpretation techniques that is able to scale up
to software systems of industrial size. This tool takes an

ISO-compliant piece of C code and performs static
analysis using sophisticated Abstract Interpretation
algorithms. The result is the program in which all
potentially dangerous operations have been assigned a
color:

• Green the operation is safe, no runtime error can
occur at this point

• Red a runtime error occurs whenever the
operation is executed

• Black the operation is unreachable (dead code)
• Orange the operation is potentially dangerous

(runtime error or false alarm).
PolySpace C-Verifier achieves a fairly good selectivity,
since in practice no more than 20% of operations are
marked as orange. In this paper we focus mostly on the
operations that are marked as red by the analyzer. It
means that we use the analyzer as an "abstract debugger"
which points out errors without running the program.

3. Code Preparation

Ideally, a verification tool should accept code as it is
written by the developer. However, it is not necessarily
the case in practice. The code always has to be massaged
a little before it goes through. We first give an overview
of the MER code, and then we describe the modifications
we made to accommodate the analysis.

3.1. MER Code Structure

In this section, we give a high-level view of the MER
code. MPF was a successful mission, and therefore, its
code has been used as a base for developing the code for
other missions such as Deep Space One, DS1, and MER.
The software is built on top of the VxWorks operating
system. All MPF-derived code we analyzed is organized
as follows.

The code is multi-threaded. All threads are created
during an initialization phase, but they are activated only
when needed. For example, there is no need to activate
the EDL (Entry, Descent, and Landing) thread before the
end of the cruise phase. Threads communicate through
message passing using mechanisms given by the
VxWorks OS. Each request message provides the name
of a callback routine to return results. There are more than
100 tasks in MER.

In general, the software keeps two logs during
computations. One stores scientific data, while the other
keeps track of the safe operation of the system in terms of
event sequences. The logging rate depends on the storage
capacity, the criticality of the current computations, and
the bandwidth available to send these data to ground
control.

State, and critical, information is stored in fairly
shallow data structures which are allocated during the
initialization phase. Typically, these data structures are
arrays (they represent the matrices that are used for
controlling the spacecraft), or records whose fields may
be arrays. These data structure have a nested depth of two
or three, which is why we refer to them as fairly shallow.

3.2. Code Modifications

The first modification is due to detecting errors. These
errors most often come from the compilation phase.
Indeed, PolySpace Verifier checks for strict ISO
standards, when traditional compilers are more
permissive. Sometimes (and hopefully) errors are
discovered by the analysis, and they need to be fixed
before the analysis can be run again. In both cases, these
code modifications are necessary.

The second type of modifications comes from
scalability problems. Big software systems have to be
divided into pieces ranging from 20 KLOCS to 40
KLOCS. Sometimes this decomposition is natural
because of the modularity of the code, sometimes it is not
obvious. Stubs for the environment may have to be
written.

The third type of modifications is due to the tool
limitations. For example, the tool assumes a true
concurrency models in which all threads are started as
soon as the main ends; this resulted in minimal
modifications. Basically, we wrote a main program that
performed the initialization needed by the modules we
analyzed. The Mars code uses quite a bit of function
pointers, and the tool could not always resolve those. In
these cases, the code had to be carefully modified to
ensure the validity of the results.

4. Analysis Results

In this section, we describe the results we obtain
during the experiments. All analyses were conducted
using the PolySpace Verifier on a PC (running Linux)
using a 2 MHz CPU and 2 GB of memory. In a
subsequent section, we give approximate performance
figures. First, we describe the types of errors we
encountered. Obviously we cannot mention all the errors
we found and their exact description. Finally we give
performance figures.

4.1. Results

The MER code suffered essentially from NIV
problems. We mention only the following one because it
will lead to an interesting discussion in the next section.

void getData (T* p) {
 ...
 if (flag == TRUE) {
 ...
 p->data = ...;
 p->status = 1;
 ...
 }
 else {
 sendEvrMsg(“data unavailable”);
 }
}

It is obvious that the getData routine can exit without
setting the contents of the structure passed as an
argument.
Therefore, the tool flagged numerous uses of variables
passed to getData when their data field was accessed.
Note that the status field in type T is there to tell if the
data is available or not. So, every access to this structure
should be preceded by a test of the status field. It was not
the case in the version we analyzed. However, even if it
were the case, we would have had an error on the test of
the status field unless it had been set to a default value at
initialization.

Our final error example was caught very quickly by
the tool. In fact, it was caught during the compilation
phase without requiring running any analysis algorithm.
In this case the tool noticed that the address of a local
variable was returned.

int foo(...) {
 int var;
 ...
 var = ...;
 ...
 return &var;-----------
}

4.2. Performance

There are usually two problems with using static
analysis on real programs. First, static analysis tools have
trouble scaling to large software systems (100 KLOCS
and up). Second, static analysis is usually conservative
(all execution paths are covered), and this results in the
generation of many false alarms. We now discuss both
aspects based on our experience.

PolySpace Verifier was originally conceived for Ada
programs. It seems that it scales well for such programs
(over 1 Million LOCS). Unfortunately, the code we
analyzed was written in C, and was too large (more than

650 BLOCS) for the tool. We experienced a limitation of
about 40 KLOCS given the type of algorithmic and
structure complexity present in the MER code. To get
around this scalability problem, we divided the code into
modules ranging from 20 KLOCS to 40 KLOCS. We
intentionally kept complicated modules close to 20
KLOCS so that we could obtain decent precision. This
means that the rest of the program was stubbed. In
general, we chose to stub utility modules that implement
the ``plumbing'' of the system (i.e., communication layer,
file I/O, and so on). We concentrated our analyses on the
critical modules and on modules that were either
significantly different from the MPF code or new. Our
reasoning here is that utility modules are often inherited
without modifications from one mission to the next.
Critical components such as the attitude control module
are usually one of a kind.

We measure precision (also called selectivity by
PolySpace) of the analysis in terms of the distribution of
the safety checks performed by the tools. Thus, our
precision measure is given by the following formula:

precision = (G + R + U) / (G + R + U + O)

where G is the number of checks deemed safe (Green), R
the number of unsafe (Red) checks, U the number of
unreachable checks, and O the number of potentially
unsafe (Orange) checks. Throughout our experiments, we
obtain a precision ranging from 80% to 90%. This means
that between 10% and 20% of the checks have to be
classified using other methods (manual inspection,
testing, or other technique). This was quite satisfactory,
but it appears to be still a deterrent for developers at
NASA. This is understandable when one considers that
even a small MER module of only 30 KLOCS can
generate about 5000 checks; hence, more than 500 checks
still have to be verified through other means. Such high
numbers usually scare developers away from using this
type of tools. In the next section, we suggest other ways
of using the tool. Note that the current research on static
analysis based on abstract interpretation shows that the
next generation of tools might achieve near 100%
precision. For example, Cousot et al. analyzed 10
KLOCS of Airbus code with 100% precision [6].

The time needed to run an analysis is also another
important aspect that developers worry about: the shorter
the analysis time, the more likely the tool will be used. In
our study, analysis time was often a problem (especially
with early versions of the tool). PolySpace Verifier
offered essentially two modes of analysis. The first one is
quick (about 30 minutes of analysis time), and it does not
offer much precision. It is intended to catch obvious
errors before committing to analyses with higher degrees
of precision. As the previous section showed, this phase
still catches errors despite its relative simplicity. The error

about returning a local address was caught during a quick
analysis. So, this analysis has its place to weed obvious
errors. In general, each subsequent analysis pass took
about one hour for the size of modules we analyzed. Note
that, each pass builds on top of the results of the previous
pass. Since in general after three passes we saw no
precision improvement anymore, one can say that a
precise analysis requires on average three hours.
Therefore, the tool was used mostly in a batch mode
rather than an interactive mode.

5. Lessons Learned

In this section, we discuss how to make the most
efficient use of static analysis. We emphasize two aspects.
First, we give hints about what coding practice will
facilitate static analysis, and therefore, will lead to
verifiable code. Second, we discuss the place of static
analysis in the development process.

5.1. Coding for Static Analysis

Developers need to adapt their coding habits so that
their programs can be analyzed more easily, and more
precisely, using static analysis. In this section, we point to
some examples of coding practice that should be avoided.

One of the trickiest coding practice we had to analyze
is the use of function pointers. In the Mars code, this
practice appears in two places when a command is issued.
The code is organized in such a way that requests for
services (in other words control commands) are issued
using messages. These messages are handled by a module
that consists of a loop that performs some action
depending on the type of the message. In order to keep
messages generic, pointers to the routine that will perform
the service are passed in the message. This pointer
corresponds to an entry in a table of service routines.
However, since the alias algorithm does not distinguish
among elements of an array, the analyzer considers that
all service routines can be called. This results in
significant approximations. Moreover, the
acknowledgment that a service has been performed is
implemented through the use of callback routine handles
given in the message requesting the service. Once again,
this is a source of approximations.

Another dangerous practice consists of re-using blocks
of allocated memory and overlaying different types of
data structures over these blocks. This is a common
practice in embedded systems. Memory allocation is
considered a source of unpredictability. Therefore, it is
only done during an initialization phase. Initially
allocated blocks are then re-used by the program as
needed. For example, in MER, messages are implemented
using this scheme. Problems arise when blocks are used

sometimes as blocks of integers or sometimes as blocks of
floats. Worse, sometimes block of integers hide addresses
(that have been cast as integers). This coding practice
may be convenient for embedded systems, but it confuses
static analyzers which cannot rely on a clean, consistent
type system.

Finally, we would like to come back to one of the
errors we found. Recall that a data structure had two
fields, one holding data values and the other giving a
status on the availability, or validity, of the data. The
error was that the data field was accessed without being
set. The proper use of this coding construct is that the
status flag should always been set by the routines that
may write in the data field, and the use of the data field in
other routines should always be protected by a test on the
flag as follows:

...
if (p->status == VALID) {
 data = p->data;
 ...
}
...

From a static analysis point of view, it is difficult to
track the value of the status flag. Therefore, the use of the
data field will always be flagged as an orange even
though the code is absolutely correct. This example is
typical of cases where a static analyzer needs to be able to
recognize safe coding patterns. Another solution would
consist of providing annotations. However, we do not
recommend such solutions since potential users are
generally averse to writing annotations, especially in
development environments with stringent time
constraints.

5.2. Using Static Analysis

The final point we wish to address is when static
analysis should be used. Does it belong in development
phases or unit testing or system integration? Where is it
the most effective? To answer this question, we will rely
on the traditional V diagram representing software
lifecycle as shown in Figure 1.

We recommend the use of static analysis from the
Software Detailed Design phase to the Software
Integration phase if possible. Current static analysis tools
can be applied without any problem from Software
Coding to Software Unit testing. Current scalability
problems prevent their full use in the Software Integration
phase.

• Software Coding: Static analyzers can be used
as sophisticated compilers because they perform
stricter checks with respect to the ISO standard
and they use advanced alias algorithms. They

can also be used as abstract debuggers in this
phase.

• Software Unit Testing: This is the phase in
which current analyzers will perform at their
best. Units can be verified for a wide range of
inputs for a low cost.

• Software Integration: This is currently beyond
the reach of commercial static analyzers. They
cannot scale to full size systems and deliver
enough precision. However, they can still be
used as abstract debuggers in this phase.

The use of static analyzers as debuggers is interesting;

it provides a new way to approach oranges (false alarms).
Basically it works as follows. All red errors (unsafe
checks) are of course corrected. Then, only some oranges
are analyzed. Based on previous experiences, one might
decide to look for certain types of oranges (e.g., NIV
errors). Another approach is to look for isolated oranges.
It is rare that analysis approximations lead to isolated
oranges. It usually leads to a cluster of orange checks. So,
an isolated orange might be the sign of a deeper problem.
Whatever selection criterion is used, the main point is that
not all oranges are being checked manually. Only those

S/W Detailed
Design

S/W Qualif.
 Testing

 S/W Unit
Testing

S/WArch.
Design

S/W Coding

System
Integration

System
Qualif. Testing

Syst. Arch.
Design

S/W Req.
Analysis

Syst. Reqs.

KEY
Phase

Product

Verify

Validate

Software
Integration

Figure 1. Place of Static Analysis in S/W Lifecycle.

Static Analysis

that have a serious potential for being true errors (which
is determined empirically) are studied.

6. Conclusions

In this paper we have presented the results of a study
in which a static analysis tool was applied to real NASA
mission code (i.e., modules of the flight software for
Mars Exploration Rover). The main results are as follows.

• Current commercial analyzers do not scale to
software systems of more than 40 KLOCS.

• They are still useful to find errors since we
found errors in real mission code.

• The rate of false alarms has been found to be
between 10% and 20%.

• Some coding constructs should be avoided in
order to make a more efficient use of static
analyzers.

• Aliasing is definitely a bottleneck in terms of
precision and scalability.

• Static analyzers can be extremely useful when
used as abstract debuggers rather than
certification tools.

The goal of this study was to identify the current
strengths and weaknesses of static analysis when it is
applied to real critical software (as it is built at NASA).
Based on this experiment, it is our belief that current
weaknesses (namely scalability and precision) can be
addressed by building specialized static analyzers that are
dedicated to specific software families. To prove our
point, we are currently ongoing the design of such a
specialized analyzer for the NASA software systems
following the Mars Path Finder legacy.

7. References

[1] W. Landi, “Interprocedural Aliasing in the Presence
of Pointers”, Ph.D. thesis, Rutgers University, 1992.

[2] A. Aiken and M. Fähndrich, “Program Analysis using
Mixed Term and Set Constraints”. In Proceedings of the
4th International Static Analysis Symposium (SAS’97),
1997.

[3] P. Cousot and R. Cousot, “Static Determination of
Dynamic Properties of Programs”. In Proceedings of 2nd
International Symposium on Programming, pages 106-
130, 1976.

[4] P. Cousot and R. Cousot, “Abstract Interpretation: a
Unified Lattice Model for Static Analysis of Programs by
Construction or Approximation of Fixpoints”. In
Proceedings of 4th Symposium on Principles of
Programming Languages, pages 238-353, 1977.

[5] PolySpace: http://www.polyspace.com/.

[6] B. Blanchet, P. Cousot, R. Cousot, J. Feret, L.
Mauborgne, A. Miné, D. Monniaux, and X. Rival,
“Design and Implementation of a Special-Purpose Static
Program Analyzer for Safety Critical Real-Time
Embedded Software”. In the Essence of Computation:
Complexity, Analysis, Transformation, LNCS 2566, pages
85-108, 2003.

